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Abstract
The interference part of energy–momentum radiated by two point charges
arbitrarily moving in flat spacetime is evaluated. It is shown that the sum
of work done by Lorentz forces of charges acting on one another exhausts
the effect of combination of outgoing electromagnetic waves generated by the
charges.

PACS numbers: 03.50.De, 11.10.Gh

1. Introduction

In classical electrodynamics particles interact with one another through the medium of a
field which has its own uncountable infinite degrees of freedom. The dynamics of the entire
system is governed by the action which is invariant under ten infinitesimal transformations
(space–time translations and rotations) which constitute the Poincaré group. These symmetry
properties imply the conservation laws, i.e. those quantities that do not change with time.

Dirac [1] used the solution of a wave equation with point-like source in the law of
conservation of total energy–momentum of a composite (particle plus field) system to derive
the radiation-reaction force. In this letter we trace a series of stages in the calculation of the
energy–momentum [2]

pν
em =

∫
�

dσ µT µν, (1.1)

emitted by two relativistic charges. We show that the energy–momentum balance equations
result in the law of mutual interaction of these charges.

The evaluation is not a trivial matter, since the Maxwell energy–momentum tensor
density T̂ is quadratic in electromagnetic field strengths f̂ = f̂ (1) + f̂ (2), where f̂ (a) denotes
the retarded Liénard–Wiechert solution associated with the ath particle. Hence T̂ can be
decomposed as follows [3]:

T µν = T
µν

(1) + T
µν

(2) + T
µν

int . (1.2)
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By T̂(a) we mean the contribution due to the field of the ath particle

4πT
µν

(a) = f
µλ

(a) f
ν
(a)λ − 1/4ηµνf κλ

(a)f
(a)
κλ (1.3)

while the interference term

4πT
µν

int = f
µλ

(1) f
ν
(2)λ + f

µλ

(2) f
ν
(1)λ − 1/4ηµν

(
f κλ

(1) f
(2)
κλ + f κλ

(2) f
(1)
κλ

)
(1.4)

describes the combination of outgoing electromagnetic waves.
Aguirregabiria and Bel [3] prove the fundamental theorem that the ‘mixed’ radiation

rate does not depend on the shape of the space-like surface which is used to integrate the
Maxwell energy–momentum tensor density. For the specific plane motion of the charges the
perturbation scheme is elaborated within the framework of predictive relativistic mechanics
[4, 5]. The lowest approximation gives the well-known expression for the dipole radiation of
two point charges whose motion is governed by Coulomb law [6].

A specific iterative procedure is also proposed by Hojman et al [7]. The authors study
the system of two charges which are close to each other. They introduce the specific small
parameter: relative velocity of the particles divided on the speed of light. The radiation of the
two-body system as a whole is expressed as a function of the relative velocity of relativistic
charges.

Covariant separation of the motion of a system of relativistic particles as a whole from its
inner motion [8, 9] is fruitful in the study of radiation effects [10]. To describe the radiation of
a relativistic N-body system Klepikov [10] defines the centre of a system of radiation events
which allows us to synchronize the instants at which electromagnetic waves emitted by point
charges combine on the points of a very distant sphere. Fourier analysis is applied to calculate
the time-angular distribution of energy–momentum radiated by a system of charged particles.
The radiation of a bunch of particles moving in a uniform magnetic field is considered in
detail.

The only exact solution is obtained by Villarroel and Rivera [11, 12]. The authors
calculate the rate of radiation emitted by two uniformly circling point-like charges. Rigorous
calculations show that the interference rate of radiation which escapes to infinity is equal to the
rate of work done by Lorentz forces of charges acting on one another. It is worth noting that
in [13] the balance between the radiation emitted by two identical charges rotating at opposite
ends of the diameter of a fixed circle and the work of Lorentz forces has been established
numerically.

2. Coordinate system

To integrate the ‘mixed’ radiation rate

pν
int =

∫
�

dσ µT
µν

int , (2.1)

we use the hyperplane �t = {y ∈ M4 : y0 = t} associated with an unmoving inertial observer.
The ‘laboratory’ time t is a single common parameter defined along all the worldlines ζa of
the system.

Due to delay in disturbances the intersection of spherical wave fronts

Sa(za(ta), t − ta) =
{

y ∈ M4 : (y0 − ta)
2 =

∑
i

(
yi − zi

a(ta)
)2

, y0 = t, t − ta > 0

}
, (2.2)

constitutes support of integral (2.1) [3]. The retarded instants t1 and t2 label the points
z1(t1) ∈ ζ1 and z2(t2) ∈ ζ2 at which the past light cone with vertex at observation point y ∈ �t
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Figure 1. The sphere S1(O1, t − t1) is the intersection of the future light cone with vertex at point
z1(t1) ∈ ζ1 and hyperplane �t . The sphere S2(O2, t − t2) is the intersection of �t and the forward
light cone of z2(t2) ∈ ζ2. Intersection S1 ∩ S2 is the circle C(O, h) with radius |OH | := h. It
contains an observation point y ∈ �t .

is punctured by the worldlines of the first and the second particles, respectively. Points on the
circle S1 ∩ S2 are distinguished by polar angle ϕ ∈ [0, 2π ] (see figure 1).

Analysis of the triangle O1HO2 gives the local expressions for coordinate transformation
(yα) �→ (t, t1, t2, ϕ):

yα = zα
a (ta) + �α

α′(t1, t2)k
α′
a . (2.3)

Four components

k0
a = t − ta, k1

a = h sin ϕ, k2
a = h cos ϕ, k3

a = (−1)a
q

2
+

(
k0

2

)2 − (
k0

1

)2

2q
(2.4)

constitute null-vector ka . Having rotated it by orthogonal matrix � we obtain the vector Ka

pointing from za(ta) ∈ ζa to y ∈ �t . Matrix spacetime components are �0µ = �µ0 = δµ0;
its space components �ij constitute the orthogonal matrix which rotates space axes of the
laboratory Lorentz frame until the new z-axis is directed along 3-vector q = z1(t1) − z2(t2).

An integration hyperplane �t is a surface of constant t. The surface element is given
by dσ0 = √−g dt1 dt2 dϕ where

√−g = r1r2/q is the determinant of the metric tensor
of Minkowski space viewed in curvilinear coordinates (2.3). Symbol ra denotes the scalar
product (va · Ka), va := (

1, dzi
a

/
dta

)
, taken with opposite sign; ra is then nothing but the ath

retarded distance [2] scaled by factor γ −1
a := √

1 − v2
a .

Let us consider the coordinate system centred on an accelerated worldline of the first
particle. In context with the principle of retarded causality, �t is divided into two quite
different origins: (i) causal, which is spanned by curvilinear coordinates (2.3) where t1
increases from −∞ to the instant t ret

1 (t) being the solution of the algebraic equation

t − t ret
1 = q

(
t ret
1 , t

); (2.5)

(ii) acausal, where parameter t1 increases from t ret
1 (t) to the instant of observation t. (The

future light cone of z1
(
t ret
1

)
touches the second worldline at point z2(t), see figure 4.) The

situation is pictured in figures 2–5.
In an analogous way we construct the coordinate system centred on the worldline of the

second particle. If t2 ∈ ] − ∞, t ret
2 (t)] then t1 ∈ [

t ret
1 (t2), t

adv
1 (t2)

]
; if t2 ∈ [

t ret
2 (t), t

]
then

t1 ∈ [
t ret
1 (t2), t

′
1(t, t2)

]
, ϕ ∈ [0, 2π [.
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Figure 2. For a given t1 the retarded time t2 increases from t ret
2 (t1) to tadv

2 (t1). Minimal value
t ret
2 (t1) labels the vertex of the forward light cone which is punctured by the worldline of the first

charge at a given point (t1, z
i
1(t1)). The worldline of the second charge punctures the future light

cone of this point at point (tadv
2 (t1), z

i
2(t

adv
2 )).

Figure 3. The sphere S2(O
ret
2 , t − t ret

2 ) is the intersection of the future light cone at (t ret
2 , zi

2(t
ret
2 ))

and �t . It touches a given sphere S1(O1, t − t1) at point N. The sphere S2(O
adv
2 , t − tadv

2 ) touches
S1(O1, t − t1) at point S. If retarded time t2 increases from t ret

2 (t1) to tadv
2 (t1) the sphere S1 is

covered by circles C(O, h) = S1 ∩ S2. (A circle S1 ∩ S2 is pictured in figure 1.)

3. Interference part of the electromagnetic field 4-momentum

The volume integration (2.1) can be performed via the coordinate system centred on a worldline
either of the first particle[∫ t ret

1 (t)

−∞
dt1

∫ tadv
2 (t1)

t ret
2 (t1)

dt2 +
∫ t

t ret
1 (t)

dt1

∫ t ′2(t,t1)

t ret
2 (t1)

dt2

] ∫ 2π

0
dϕ

r1r2

q
(3.1)
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Figure 4. The forward light cone of (t ret
1 (t), zi

1(t
ret
1 )) touches the second worldline at the instant of

observation. Future light cones of upper vertices do not intersect it at all. For a given t1 ∈ [t ret
1 (t), t]

the parameter t2 increases from t ret
2 (t1) to t ′2(t, t1). The maximal value t ′2(t, t1) labels the vertex of

the future light cone which touches the forward light cone of (t1, z
i
1(t1)). The minimal value of t2

is the solution t ret
2 (t1) of equation t1 − t ret

2 = q(t1, t
ret
2 ).

Figure 5. For a given t1 ∈ [t ret
1 (t), t] the sphere S1(O1, t − t1) is a disjoint union of circles

C(O, h) = S1 ∩ S2. Their radius h and centre coordinate O are determined by t2. The parameter
t2 increases from t ret

2 (t1) (circle S2(O
ret
2 , t − t ret

2 )) to t ′2(t, t1) (circle S2(O
′
2, t − t ′2)); ϕ ∈ [0, 2π ].

or of the second particle[∫ t ret
2 (t)

−∞
dt2

∫ tadv
1 (t2)

t ret
1 (t2)

dt1 +
∫ t

t ret
2 (t)

dt2

∫ t ′1(t,t2)

t ret
1 (t2)

dt1

] ∫ 2π

0
dϕ

r1r2

q
. (3.2)

The end points of these integrals arise from the interference pictured in figures 2 and 4.



L536 Letter to the Editor

It is straightforward to substitute the components of electromagnetic fields f̂ a in terms
of curvilinear coordinates (t, t1, t2, ϕ) into the integrand of equations (2.1) to calculate the
interference part of radiated energy–momentum. First of all we should perform the integration
over ϕ. It is now a straightforward (but tedious) matter to derive that the integral of the
interference part of the electromagnetic field’s stress–energy tensor over polar angle has the
remarkable property of being the sum of partial derivatives in (retarded) times t1 and t2 [14].
(The derivation is very cumbersome and we cannot present it in the present letter.)

The crucial issue is that the end points are valuable only in the integration procedure. The
retarded instant, t ret

a (tb), and advanced one, tadv
b (ta) (a �= b) arise naturally as the limits of

integrals. All the moments are before the observation instant t, so that the retarded causality
is not violated. They label the points S and N in which fronts of outgoing electromagnetic
waves produced by e1 and e2 touch each other (see figures 3 and 5). Triangle O1O2H which
is pictured in figure 1 reduces to the line at these moments.

It is natural to integrate the expression being the time derivative with respect to t2 according
to the rule (3.1). The result is[∫ t ret

1 (t)

−∞
dt1

∫ tadv
2 (t1)

t ret
2 (t1)

dt2 +
∫ t

t ret
1 (t)

dt1

∫ t ′2(t,t1)

t ret
2 (t1)

dt2

]
∂G2(t1, t2)

∂t2

=
∫ t ret

1 (t)

−∞
dt1G2

[
t1, t

adv
2 (t1)

] −
∫ t

−∞
dt1G2

[
t1, t

ret
2 (t1)

]
+

∫ t

t ret
1 (t)

dt1G2[t1, t
′
2(t, t1)].

(3.3)

Having applied rule (3.2) to the expression of type ∂G1/∂t1, we obtain[∫ t ret
2 (t)

−∞
dt2

∫ tadv
1 (t2)

t ret
1 (t2)

dt1 +
∫ t

t ret
2 (t)

dt2

∫ t ′1(t,t2)

t ret
1 (t2)

dt1

]
∂G1(t1, t2)

∂t1

=
∫ t ret

2 (t)

−∞
dt2G1

[
tadv
1 (t2), t2

] −
∫ t

−∞
dt2G1

[
t ret
1 (t2), t2

]
+

∫ t

t ret
2 (t)

dt2G1[t ′1(t, t2), t2].

(3.4)

A smooth double derivative can be written in the form either ∂/∂t1[∂G0/∂t2] or ∂/∂t2[∂G0/∂t1]
and coupled with ∂G1/∂t1 or ∂G2/∂t2, respectively.

An essential feature of integration is that the functions t ret
a (tb) being the root of algebraic

equation

tb − t ret
a = q

(
t ret
a , tb

)
(3.5)

and advanced one, tadv
b (ta), which satisfies the relation

tadv
b − ta = q

(
ta, t

adv
b

)
(3.6)

are inverses to each other. This circumstance allows us to change the variables in the ‘advanced’
integral in equation (3.3) and then add it to its ‘retarded’ counterpart in equation (3.4).

The functions t ′1(t, t2) and t ′2(t, t1) which satisfy the algebraic equations

2t − t ′1 − t2 = q(t ′1, t2), (3.7)

2t − t1 − t ′2 = q(t1, t
′
2). (3.8)

are inverses too. It allows us to change the variables in the last integral of the right-hand side
of equation (3.3) and couple it with the last term in equation (3.4).

Scrupulous integration over the ‘acausal’ region of �t (that pictured in figures 4 and 5)
gives the function of the end points only. A surprising feature of the computation is that the



Letter to the Editor L537

result heavily depends on the choice of order of differentiation in double derivatives. For
example, if we prefer ∂/∂t1[∂G0/∂t2] in the integrand of the zeroth component of
equation (2.1), then we obtain

−e1e2

2k0
2

∣∣∣∣
t2→t

t2=t ret
2 (t)

= − lim
t2→t

e1e2

2(t − t2)
+

e1e2

2
[
t − t ret

2 (t)
] . (3.9)

If one chooses ∂/∂t2[∂G0/∂t1] and adds the term to ∂G2/∂t2, we arrive at
e1e2

2k0
1

∣∣∣∣
t2=t

t2→t ret
2 (t)

= e1e2

2
[
t − t ret

1 (t)
] − lim

t1→t

e1e2

2(t − t1)
. (3.10)

So far as the integration over the causal region of �t is concerned, the result contains,
apart from some ‘changeable shell’, also an ‘immovable core’ which is then nothing but the
sum of work done by the Lorentz forces of interacting particles. The ‘shell’ consists of the
functions of momentary positions and velocities of the particles and involves the divergent
terms.

A single charged particle cannot be separated from its bound electromagnetic ‘cloud’
which has its own 4-momentum and angular momentum [15, 16]. The radiative parts of the
Noether conserved quantities lead to an independent existence. The bound terms diverge while
the radiative ones are finite. The former depend on the instant characteristics of a charged
particle while the latter accumulate with time. And, finally, the form of bound terms crucially
depends on the shape of an integration surface while the radiative terms do not depend on �.

These circumstances prompt that the ‘changeable shell’ in a two-body problem is a usual
deformation of the bound electromagnetic ‘clouds’ of charges due to mutual interaction. They
are absorbed within the renormalization procedure as well as the inevitable infinities arising
in a one-particle problem. The ‘immovable’ terms should only be taken into account in the
total energy–momentum of our composite system:

P µ =
2∑

a=1

[
p

µ
a,part(t) +

2

3
e2
a

∫ t

−∞
dta(aa · aa)u

µ
a (ta)

]
−

∑
b �=a

∫ t

−∞
dtaF

µ

ba. (3.11)

Here pa,part denotes the (already renormalized) 4-momentum of the ath charged particle. The
integral of Larmor relativistic rate describes the contributions T̂(a) due to the ath individual
field, while the sum of work done by the Lorentz force due to the bth particle acting on the
ath one expresses the joint contribution T̂int due to combination of fields.

4. Conclusions

Conserved quantities place stringent requirements on the dynamics of the system. Change
in the radiative parts of energy–momentum and angular momentum carried by the
electromagnetic field should be balanced by a corresponding change in the (already
renormalized) particles’ 4-momenta and angular momenta, respectively. Since the action
is not propagated instantaneously, the balance in a vicinity of the first charge as well as in
a neighbourhood of the second charge should be achieved separately. Having differentiated
equation (3.11) we arrive at the relativistic generalization of Newton’s second law

ṗ
µ
a,part = −2

3
e2
a(aa · aa)u

µ
a + F

µ

ba (4.1)

where loss of energy due to radiation is taken into account. To obtain the Lorentz–Dirac
equation for more than one charge we have to substantiate Teitelboim’s expression [15] for
the 4-momentum of an accelerated point-like charge:

p
µ
a,part = muµ

a − 2

3
e2
aa

µ
a . (4.2)
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The law of conservation of total angular momentum of the system implies (4.2) whenever
the interference contribution of the radiative part of angular momentum carried by the
electromagnetic field is equal to

−
∑
b �=a

∫ t

−∞
dta

[
zµ
a (ta)F

ν
ba − zν

a(ta)F
µ

ba

]
(4.3)

(see [17]). It is true in the case of head-on collision [18]; the problem of electromagnetic
angular momentum radiated by two arbitrarily moving charges requires careful consideration
[19].
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